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Enabling DNN on Microcontrollers is Attractive

®* loT devices =mm===) Microcontrollers(MCUSs).
* Deep learning has become the state-of-art solution for most mobile applications.

* Offload computations to cloud server === not always realistic(latency, privacy).

Microcontroller

Smart City Smart Healthcare Smart Retalil Smart Home
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Challenges
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1. Deep learning models are too large.

2. MCU is usually resource-constraint. (Flash, Memory)
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Existing Optimization Strategy

* Model compression: convert a large model to a tiny version.
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Knowledge Distillation Model Selection [1]

[1] Taylor B, Marco V S, Wolff W, et al. Adaptive deep learning model selection on embedded systems[J]. ACM SIGPLAN Notices, 2018
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Rethinking the Methodology from a Different Perspective

* Top-down vs. Bottom-up Methodology

|
(CIassification)
Large Model

| o : i T . Memory: Expensive(128KB)
1 O . 1 !
! 5 Compression/KD ! | Model Selector ’ a!
! 3 Lo ) S' Flash: Cheap(1MB)
1 . <1}
: ' | Tiny Models 8
i (CIassification) i : E
(a) Top-down (b) Bottom-up

* Limited model capacity== Limited learned knowledge ==) Higher diversity

* The effectiveness of the bottom-up method relies on two insights:
1. Tiny models can perform higher diversity than larger models.

2. Aggregating multiple weak models promises a higher upper bound on classification accuracy.
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Model Diversity

* Tiny(weak) Models vs Large(strong) models
UniMiB-SHAR HAR dataset

Model Index 1 2 3 4 5

Strong Model (484KB) | 95.3% | 95.9% | 95.2% | 96.1% | 95.9%
Weak Model (28KB) 64.7% | 57.8% | 582% | 61.4% | 60.9%
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(a) Strong model (b) Weak model

Note: Each model has different initialization.
« Similarity of the model representations(CKA similarity).
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6
[1] Kornblith S, Norouzi M, Lee H, et al. Similarity of neural network representations revisited[C]//International conference on machine learning. PMLR, 2019.
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Key insight: union accuracy

Union accuracy: the percentage of samples that can be correctly classified by at least one

model.

‘»

Models

Union
Model Index 1 2 3 4 5 Accuracy
Strong Model (484KB) | 953% | 959% | 952% | 96.1% | 95.9% 98.9% (1 2.8)
Weak Model (28KB) 64.7% | 57.8% | 58.2% | 61.4% | 60.9% 81.5% (1 16.8)

(a) Strong models

[ Model 1
L Model 2

Model 3
[0 Model 4
Model 5

(b) Weak models

7
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The Failure of Model Selection
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i Wrong

i Correct

Union Selection
Model Index 1 2 3 4 5 Accuracy || Accuraey
Strong Model (484KB) | 95.3% | 95.9% | 95.2% | 96.1% | 95.9% 98.9 %
Weak Model (28KB) 64.7% | 57.8% | 58.2% | 61.4% | 60.9% 81.5% 66.6%

 Naive model selection failed because of two reasons.

1. Independent training classifiers cannot provide enough diversity(multi-label).

2. The selector and the classifiers are mutually related, but naive model selection fails to

capture the relationship.
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DITMoS Framework Overview
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Training Stage 1: Training Data Splitting

« Splitting the dataset to several subsets to encourage the model diversity.
(multi-label problem)

Training Data Splitting Model 1

Model 2 ’
Model 3
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Training Stage 2: Adversarial Training

« Adversarial training capture the relationship between selector and classifiers.
« Similar to train generator and discriminator in GAN iteratively.

Adversarial Training

* Step 1. Freeze the classifiers, train the selector.
Freeze Classifiers

. Feature
Aggregatio

11
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Training Stage 2: Adversarial Training

: .. Adversarial Trainin
e Step 2. Freeze the selector, re-train the classifiers. :

* Train the classifier selected by the selector.
* Reduce the overlap of classifiers.(diversity) ,
* Improve the union accuracy.

_ Feature
Aggregatio

Loss = CEsel "I_Of'CEsingle _I')B'C-Eunion +’)/'CE0verlap

Freeze Selector

| i Chosen

i Unchosen Correct

. Unchosen Incorrect

12
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Training Stage 3: Feature Aggregation

mTTTTTTTIIT €~ ~Seiecdted Classifier .~~~ " T T TTTTTTTTZ !

I Input G :
V 9 2
| z o E
o _@_) -:’(J_Ia;sﬁ‘ication § = ” g

e Increase the representation capability.
e Add global information to the classifiers.

Problem: feature aggregation increase memory consumption. (DNN inference on MCU is layer-by-layer).

[] Reused activation
1 3 Output activation
E Input activation
Raw input

L

Reserve Reserve

Peak memory

Pooling | Reserve | |Reserve

13
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Implementation: Network Slicing

* Network slicing: Store the reused feature in the Flash.

@ Classification |

(1) Selection

Slice 1
LA

Selected Classifier
Slice 2

Slice 4

[] Reused activation
1 3 Output activation
EEE Input activation

{ €3 Raw input

e

S,
>
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>
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Reuse _

Pooli
Pooling Reser

Pooling

Sel_Convl Sel_Conv2 Sel_Conv3

Sel_FC

=
Cla_Convl Cla_Conv2 Cla_Conv3  Cla_FC

Flash is much cheaper than memory.
Flash is slower than memory.

14
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Evaluation

« Datasets:

* UniMiB-SHAR (human activity recognition, accelerometers)
* Speech Commands(keyword spotting, microphone)
* DEAP(Emotion recognition, EEG)

e Device

* Hardware: STM32F767Z1 (RAM: 512KB, FLASH: 2MB)
* Al toolchain: STM32Cube.Al

 Model
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Evaluation

» Baselines

SigCla A 6-layer single CNN

SigCla-KD A 6-layer single CNN with SOTA Knowledge Distillation[1]
Ada-MoE A Mixture of Expert architecture using the same model as DiTMoS
Ensemble Two 3-layer CNNs using an averaging ensemble

Mixture of Experts(MoE)

1 1
1 1
Ia?er |a¥u
_.[
! i

5

G(x),

. (MoE layer

[1] Huang T, You S, Wang F, et al. Knowledge distillation from a stronger teacher[J]. Advances in Neural Information Processing Systems, 2022, 35: 33716-33727. 14
[2] Shazeer N, Mirhoseini A, Maziarz K, et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer[J]. arXiv preprint arXiv:1701.06538, 2017.
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Experimental Results

Overall performance
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(a) UniMiB-SHAR (b) Speech Commands (c) DEAP

« DITMoS achieves up to 13.4% accuracy improvement compared to the best baseline.

17
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Experimental Results

Impact of number of classifiers
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(a) UniMiB-SHAR (b) Speech Commands (c) DEAP

 The optimal number of classifiers depends on the datasets.

 There will be a tradeoff between selector performance and union accuracy.

18
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Experimental Results

Impact of model size
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« DITMoS consistently outperforms baselines under different model sizes.
 For UniMiB-SHAR and Speech Commands, DiTMoS shows higher improvement

for smaller models.

19
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Experimental Results

System Performance on UniMiB-SHAR

Memory Flash Latency | Energy

Approach Usage(KB) | Usage(KB) | (ms) | (mJ)
SigCla 6.1 63.6 11.9 3.9
SigCla-KD 6.1 63.6 11.9 39
Ada-MoE 6.1 168.2 10.4 34
Ensemble 6.1 514 10.4 34
DiTMoS w/o Slicing 8.5 166.9 10.9 3.6
DiTMoS 6.2 166.9 12.5 4.1

«  Without network slicing, the memory usage will be higher than other baselines.
« Network slicing will reduce memory usage but slightly increase the latency.

20
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Experimental Results

Ablation Study

Ablation Study UniMiB-SHAR | Speech Commands | DEAP
Random Splitting 84.9% 84.3% 75.8%
w/0 Adversarial Training 72.6% 81.8% 56.3%
w/o Feature Aggregation 83.5% 86.0% 76.3%
DiTMoS 86.2% 86.2% 77.4%

« Removing the feature aggregation module can still achieve higher performance
while maintain comparable latency and memory usage.

21
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Takeaways

* We introduce the fresh concept of Union Accuracy, which is defined as the accuracy where
a sample can be correctly classified by at least one weak model.

* Union accuracy provide another perspective to leverage the model diversity to reduce
computation overhead of conventional ensemble and MoE approaches.

* DITMoS consists of 3 major components: training data splitting, adversarial training, and
heterogeneous feature aggregation.
* DITMoS achieves up to 13.4% accuracy improvement compared to the best baseline.

* Future Works
* Generalize DiTMoS to vision tasks.
* Combine with neural architecture search(NAS) and model compression.

22
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Thanks!

Presenter: Xiao MA

Email: xiaoma.2022@phdcs.smu.edu.sg

Code: https://github.com/TheMaXiao/DiTMoS
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